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Abstract. In the present work, we develop an algorithm for the real-
time estimation of the surface tension of an axisymmetric drop, sub-
jected to gravitational or rotational forces. We propose an edge detec-
tion algorithm that gives an experimental profile from an image of a
drop. Then we derive mathematical models for both cases based on the
Young–Laplace equation of capillarity. We solve them by using the Euler
and the fourth order Runge–Kutta methods and obtain corresponding
theoretical profiles. Based on that, we estimate the surface tension so
that the theoretical and experimental profiles coincide. For this purpose
we use two optimization algorithms, namely the Gauss-Newton and the
Deepest descent methods.
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2.1 Introduction

The goal of the present work is to derive an algorithm for obtaining the surface
tension of a fluid, using the geometry of a drop of the fluid.

Measuring surface tension gives information on a range of material proper-
ties, e.g. absorption and adsorption properties, cleanliness, spreading, surface
free energy, surface heterogeneity, and wettability. These properties are impor-
tant in studying and developing or controlling the quality of engineered surfaces
and technical liquids. Thus, the surface tension is used in a great variety of indus-
tries such as biomaterials, chemicals, pharmaceuticals, electronics, foods, energy,
environment, paper and packaging with applications ranging from determining
the surface properties of contact lenses to the quality control of semiconductors.
For measuring surface tension, tensiometers (Fig. 2.1) are used. One of the main

Figure 2.1: Optical tensiometer, using pendant drops method [6]

approaches that those devices use is the Axisymmetric Drop Shape Analysis (see
Fig. 2.2). It consists of the following steps.

Step 1. First a drop is created, using some kind of an optical tensiometer.

1. A pendant drop (Fig. 2.3a) is a drop suspended from a needle in a bulk liq-
uid or gaseous phase. The shape of the drop is a result from the interaction
between the surface tension and the pressure due to gravity.

Figure 2.2: Schematic representation of ADSA
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2. A sessile drop (Fig. 2.3b) is a drop that comes from a capillary, perpendic-
ular to the ground. The shape of the drop is once again a result from the
interaction between the surface tension and the pressure due to gravity.

3. A spinning drop (Fig. 2.3c) is created in a horizontally arranged rotating
tube filled with a bulk phase. The forces that act on it are the gravitational
force, centrifugal force, and the forces due to the surface tension and the
internal (external) pressure.

(a) Pendant drop [1] (b) Sessile drop [7] (c) Spinning drop [8]

Figure 2.3: Types of drops

Step 2. An image of the drop is captured using a camera and the drop’s profile
is extracted, using an edge detection algorithm. Thus, we obtain an experimental
profile of the drop.

Step 3. Using the Young-Laplace equation of capillarity, we obtain a mathe-
matical model (ODE system), depending on 2 parameters. The solution of the
model with fixed parameters is called a theoretical profile.

Step 4. Finally, we estimate the values of the model parameters that mini-
mize the distance between the theoretical and experimental profiles and, thus,
estimate the surface tension (it is contained in one of the two parameters).

This approach has been extensively studied in the literature. Here, we shall
mention just a few works on the subject. In [3], Rotenberg, Boruvka, and Neu-
mann derived the model of the drop. In [1], Hoorfar and Neumann described
methods for measuring contact angles from the volume and diameter of versa-
tility for sessile and pedant drops. In [4], advanced numerical methods have
been used to improve the numerical stability and global convergence. They are
applicable to pendant and sessile drops.
Independent of the specific settings of the experiment, our approach will be the
same. In section 1, we explain how we will obtain the cloud of points of the drop’s
contour. In section 2, we will derive a model, based on the Young-Laplace equa-
tion of capillarity. There will be some differences in the model, depending on the
type of drop. In section 3, we will derive numerical schemes for solving the model
equations based on the Euler and Runge-Kutta methods. In section 4, we will
use the Deepest descent and Gauss-Newton methods to obtain the parameters,
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minimizing the distance between the theoretical and the experimental profiles.
In the Appendix, some mathematical and physical concepts are introduced, i.e.
pressure, surface tension, and curvature that are needed for deriving the model
of the drop.
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2.2 Edge detection

As we said, first we have an image of a drop, taken from an apparatus, and
we must find the contour of the drop. We assume that the drop is an ax-
isymmetric three-dimensional object and, thus, it is sufficient to work with its
two-dimensional projection. Let us introduce the coordinate system Oxz.

Figure 2.4: An image of a pendant drop taken from a camera

We make the following assumptions about the image.

1. It is a grayscale image with lighter fone color and a drop with contrasting
dark color.

2. The tube is straight with no disruptions.

We propose the following algorithm for the edge detection, based on a threshold,
δ. We shall illustrate it using the image shown in Fig. 2.4.
Step 1. Make the image black and white, so that the drop is black and the fone
is white.

We initialize the first pixel on the first row, i, with white color. If the absolute
value of the difference between the pixel i and any other pixel j in the picture
is less than δ, then the pixel j is set to white. Otherwise, it is set to black (see
Fig. 2.5).

Figure 2.5: Image obtained after step 1 of the edge detection algorithm with
δ = 40 (if δ is smaller, e.g. 10, we get really curly border) .

Step 2. Select the first black pixel from every row to obtain the left half of the



8 Axisymmetric Drop Shape Analysis

Figure 2.6: Image obtained after step 2 of the algorithm.

contour of the drop, see Fig. 2.6.
Step 3. We translate the drop so that the apex goes to the origin and flip
it around the z-axis. We cut the tube easily, because of assumption 2 — we
remove all the pixels starting from the first row of the picture with the same
x-coordinate. We add a point that is the real point of the apex (it is obtained
by taking the middle between the first black pixel and the last black pixel in a
chosen row). Finally, at this step we rescale the image, so that the first point in
it is with x-coordinate equal to 1.

(a) Translation, reflection (b) Cutting the pipe (c) Rescaling the picture

Figure 2.7: Step 3 of the algorithm.

The result of the algorithm for another image of a pendant drop is shown at
Fig. 2.8.

For sessile drops we make some modifications of the algorithm. If the drop
is sessile, before step 1 of the algorithm, we flip the image around the x-axis.
Then, finally, after step 3, we make a reflection of the image with respect to the
x-axis.

The results, produced by the algorithm for sessile and rotating drops, are
shown at Fig. 2.9 and Fig. 2.10.
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(a) Initial pendant drop [7] (b) Final profile

Figure 2.8: Edge detection for an image of a pendant drop

(a) Initial sessile drop (b) Final profile

Figure 2.9: Edge detection for a sessile drop

(a) Initial rotating drop (b) Final profile

Figure 2.10: Edge detection for a rotating drop
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2.3 Mathematical Model

2.3.1 Young–Laplace equation of capillarity

The Young–Laplace equation of capillarity (cf. [3]) describes the relation between
the mean curvature of a drop (i.e., its geometry), the pressure, induced in it, and
the surface tension.

Let us consider an infinitesimally small part ABCD of the surface of a fluid,

where
_
AB= x,

_
BC= y and P ∈ ABCD. Let the surface expand isotropically

under some internal pressure, so that the points A, B, C, D, and P are projected
to A1, B1, C1, D1, and P1, respectively, and PP1 =: ∆z (see Fig. 2.11). Let
_

A1B1= x+ ∆x,
_
B1C1= y + ∆y. Since ABCD is infinitesimally small, it can be

Figure 2.11: Expansion of an infinitesimally small part of a fluid.

approximated with a rectangle with dimensions x and y. Therefore, the area of
its surface is

Sold = xy. (2.1)

The area of A1B1C1D1 can be analogously written as

Snew = (x+∆x)(y+∆y) = xy+x∆y+y∆x+∆x∆y ≈ xy+x∆y+y∆x. (2.2)

In the latter, we have used the fact that ∆x and ∆y can be chosen to be arbi-
trarily small and, thus, ∆x∆y can be done negligibly small in comparison with
x∆y and y∆x.

Taking into account (2.1) and (2.2), it follows that the change of the area of
the surface is

∆S = x∆y + y∆x (2.3)

and the work ∆A due to the pressure is

∆A = (p1 − p2)︸ ︷︷ ︸
∆p

Sold∆z = ∆pxy∆z. (2.4)
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Let R1 and R2 be the principal radii of curvature at the point P and O1 and

O2 be the centers of the corresponding circles. Let
_
EF be the intersection

between the circle with radius R1 and ABCD and let E1 and F1 be the central
projections of E and F with center O (see Fig. 2.12). Because the neighborhood

is infinitesimally small, we have
_
EF= x and

_
E1F1= x + ∆x. Let F2 be the

Figure 2.12: Central projection with center O1.

central projection of F with center O1. Because ∆z is infinitesimally small, we
can approximate E1F2 = x + ∆x. Using the notation from Fig. 2.12, let us

denote the angle between EO and FO with ϕ. Then, from the fact that ϕ =
_
EF
R1

and ϕ =
_
E1F2
R1+∆z , we obtain

ϕ =
x

R1
=

x+ ∆x

R1 + ∆z
=

∆x

∆z
,

∆x =
x∆z

R1
.

Similarly, we can calculate that ∆y =
y∆z

R2
. We substitute ∆x and ∆y in (2.3)

and obtain

∆S =
x∆z

R1
y +

y∆z

R2
x = xy∆z

(
1

R1
+

1

R2

)
.

The pressure difference on the surface is compensated for by the surface tension,
σ. The work due to σ (see the Appendix) is

∆A = σ∆S = σxy∆z

(
1

R1
+

1

R2

)
.
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From the latter and (2.4), we obtain

∆p = σ

(
1

R1
+

1

R2

)
, (2.5)

which is called Young–Laplace equation of capillarity.

2.3.2 Derivation of the model for pendant drops

In order to derive the model from the Young–Laplace equation, we must find the
mean curvature, H, and the pressure difference.

Mean curvature
Let us define an orthonormal coordinate system Oxz, where O is the apex

of the drop and z is collinear with the axis of symmetry. We choose a point A
from the drop’s contour (see Fig. 2.13a) and through A we construct a plain α
that is tangent to the drop’s surface.

There exists a plain β that contains the point A and the axis of symmetry,
which, without loss of generality, we can assume is the plain defined by the
coordinate system. Because of the rotational symmetry, for all further analyses
we shall consider β.

Let R1 and R2 be the principal radii of curvature at A and O1 and O2 be
the centers of the corresponding circles. It can be shown that the normal line,
n, to α lies in β and, thus, O1 and O2 lie in β (Fig. 2.13). In order to do so, we
shall prove the following lemma.

(a) First principal radius of curvature (b) Second principal radius of curvature

Figure 2.13: Principal radii of curvature

Lemma 1. Let z = f(x, y) be a surface having rotational symmetry, i.e. z =
f(r), where r2 = x2 + y2. Then, the equality

x
∂f(x, y)

∂y
= y

∂f(x, y)

∂x
(2.6)

holds true.
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Proof. Using the chain rule, for the partial derivatives of f we obtain

∂f

∂x
=
∂f

∂r

∂r

∂x
=
∂f

∂r

2x

2(x2 + y2)1/2
,

∂f

∂y
=
∂f

∂r

2y

2(x2 + y2)1/2
.

Multiplying the latter two equations with y and x, respectively, we obtain the
desired equality.

Now, we are ready to prove the following proposition.

Proposition 1. The normal line, n, to α (the tangent plain to the drop’s surface
at A) lies in β (Fig. 2.13a).

Proof. Let the drop’s surface be described by the function z = f(x, y) and let
A(x0, 0, z0) be a point on the surface. The normal to the surface at the point
A has the form (fx(x0, 0), fy(x0, 0),−1). We shall prove that it lies in Oxz, i.e.
fy(x0, 0) = 0. Because the drop is axisymmetric, using Lemma 1, we obtain

∂f(x0, 0)

∂y
= 0,

which concludes the proof.

(a) The second principal center of cur-
vature lies on the z-axis

(b) The second principal center of cur-
vature and the cross section at point A

Figure 2.14: Second principal radius of curvature

Taking into account Proposition 1, the following can be shown.

Proposition 2. Let A be an arbitrary point of an axisymmetric drop’s contour.
Then, the second principal center of curvature, O2, is the intersection of the
normal, n, to the surface and the z-axis.
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Proof. It is known that

R2 = lim
∆ψ→0

∆s

∆ψ
= lim

B→A

_
AB

∆ψ
,

where B is a point from the principal circle of curvature (k2),
_
AB= ∆s, and

∆ψ is the angle between the tangents to k2 at A and B (see Fig. 2.14a and
Fig. 2.14b). Let B be the orthogonal projection of B on the cross section, k, of

the drop through A. Let
_
AB= ∆s. Then, we have

R2 = lim
B→A

AB

∆ψ
= lim

B→A

AB/ cos θ

∆ψ
=

1

cos θ
lim
B→A

∆s

∆ψ
=

1

cos θ
R,

where θ is the angle between AB and AB. We have used that lim
B→A

∆ψ

∆ψ
= 1. We

shall now prove it.

Let the radian measures of ∆s and ∆s be denoted by
_
∆s and

_
∆s, corre-

spondingly. It is known that

_
∆s =

_
AB

R2
=

_
AB / cos θ

R2
,

_
∆s =

_
AB

x
.

Then, from Fig. 2.14b it is easy to see that

∆ψ = π − 2

_
∆s

2
= π − AB/ cos θ

R2
,

∆ψ = π −

_
AB

x

and, thus,

lim
B→A

∆ψ

∆ψ
= 1

holds true. Because the angle between AB and AB is θ, R2 ⊥ AB and R ⊥ AB,
the angle between R2 and R is also θ. Hence, the angle between n and the z-axis
is π/2− θ. Let us denote it by ϕ. Therefore, the following equality

sinϕ = cos θ =
x

R2

holds true. Because R2 and n are collinear and R2 = x
cos θ , then O2 lies on the

z-axis.
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(a) The angle between the tangent line
and the x-axis is ϕ.

(b) dx/ds = cosϕ
dz/ds = sinϕ

Figure 2.15: Meridional cross-section of the drop’s surface.

Using the definition of curvature (B.4) and Proposition 2, we obtain

1

R1
=
dϕ

ds
, (2.7)

1

R2
=

sinϕ

x
. (2.8)

Finally, we substitute (2.7) and (2.8) into (2.5) and rewrite the obtained
differential equation as a first order ODE system. It is obvious that the angle
between the x-axis and the tangent tA at the point A is ϕ (Fig. 2.15a). Moreover,
we can approximate the length of the segment AQ with the length of the arc ds
and ∠PAQ with ∠PAR, if ds is moving towards 0 (i.e. A is moving towards Q).
Using the Sine theorem in 4APR (see Fig. 2.15b), we obtain

dx

ds
= cosϕ. (2.9)

Analogously,
dz

ds
= sinϕ. (2.10)

Using (2.5), (2.7), (2.8), (2.9) and (2.10), we obtain the system

dx

ds
= cosϕ,

dz

ds
= sinϕ, (2.11)

dϕ

ds
=

∆p

σ
− sinϕ

x
.
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Pressure difference

The optical tensiometer produces a drop in a container full of liquid (Fig.
2.16). We need to find the pressure difference ∆p = pout − pin, where pout is the

Figure 2.16: Forces acting on the pendant drop

pressure out of the drop and pin is the pressure inside the drop. From (A.5) we
have

pin = p0,in − ρingz,
pout = p0,out − ρoutgz.

Subtracting the latter 2 equations we obtain

pout − pin︸ ︷︷ ︸
∆p

= p0,out − p0,in︸ ︷︷ ︸
∆p0

+ (ρin − ρout)︸ ︷︷ ︸
∆ρ

gz, (2.12)

where ∆p0 is the pressure at the apex of the drop. Finally, we must find an
expression for p0. Using the Young-Laplace equation at the apex, we obtain

p0 = σ

(
1

R1,0
+

1

R2,0

)
, (2.13)

but because the drop is axisymetric, the curvature at the apex can be approxi-
mated by a sphere, i.e. R1,0 = R2,0 = R0. After substituting the latter in (2.13),
we obtain

p0 =
2σ

R0
. (2.14)

Combining (2.12) and (2.14), it follows that the equation

∆p = ∆p0 + ∆ρgz =
2σ

R0
+ ∆ρgz (2.15)
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holds true. Finally, from (2.11) and (2.12) we obtain

dx

ds
= cosϕ,

dz

ds
= sinϕ, (2.16)

dϕ

ds
=

2

R0
+

∆ρgz

σ
− sinϕ

x
.

If we introduce the notation b := 1
R0

and c :=
∆ρg

σ
, we can rewrite the model

for pendant drops in the following form:

dx

ds
= cosϕ,

dz

ds
= sinϕ, (2.17)

dϕ

ds
= 2b+ cz − sinϕ

x
.

For the initial conditions we take x(0) = z(0) = ϕ(0) = 0.

It is obvious that there is a singularity in the third equation when s = 0.

From the definition of curvature at the apex it follows that
dϕ

ds

∣∣∣∣
s=0

= b, where b

is the curvature at the apex. We will use this as the definition of the right-hand
side of the third equation at s = 0.

2.3.3 Derivation of the model for sessile drop

The technology of optical tensiometers for sessile drops is almost the same as
the optical tensiometers for pendant drops, described in the Introduction. The
only difference is that the tube is coming from the bottom and because of that
we must define a different coordinate system as shown in Fig. 2.17. Therefore,

Figure 2.17: Defining a coordinate system in the case of a sessile drop.

we can use the model, derived in the previous subsection.
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2.3.4 Derivation of the model for rotational drop

The technology of optical tensiometers for rotating drops is different. A drop is
put in a rotating tube.

Figure 2.18: Defining a coordinate system in the case of a rotating drop.

Let us define a coordinate system as shown in Fig. 2.18. Using (2.11) and
the pressure in the drop

∆p =
ωx2

2
+ phydr,

where phydr is the hydrostatic pressure, analogously to (2.15) from the latter
equation, we obtain

∆p =
ωx2

2
+ ∆p0.

Because of the technology (the tube is rotating really fast), we can neglect the
gravitational force. Therefore, for rotating drops we obtain

dx

ds
= cosϕ,

dz

ds
= sinϕ, (2.18)

dϕ

ds
= 2b+ dx2 − sinϕ

x
,

where b := 1
R0

, d := ω
2σ and R0 is the radius of curvature at the apex.
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2.4 Numerical experiments

For our further research we need to be able to construct a theoretical profile of
the drop using system (2.17) or (2.18), assuming that the coefficients b and c
(respectively b and d) are known. We shall use the Euler method and the fourth
order Runge–Kutta method.

2.4.1 Explicit Euler Method

Let us consider the following autonomous Cauchy problem:

du(t)

dt
= f(u(t)), t ∈ (t0, T ],

u(t0) = u0,
(2.19)

where u : R→ Rn, f : Rn → Rn.
Let us introduce the following mesh:

ω̃ :=

{
ti = t0 + iτ, i = 0, n, n =

T − t0
τ

}
and denote the approximate solution of (2.19) at the point ti by yi, for i = 0, n,

yi ∈ Rn. Using the following approximation of du(t)
dt :

du

dt
=
u(t+ τ)− u(t)

τ
+O(τ),

we find the relation
yi+1 − yi

τ
= f(yi) (2.20)

between the values of the approximate solution at two consecutive points. The
geometric interpretation of this method is illustrated in Fig. 2.19 and given in
the following algorithm.

1. Let us start from the initial conditions y0 = u0.

2. We assume that we have found the points (ti, yi), i = 0, k for some k < n.

3. Using (2.20), we draw the tangent l(t) to the graph at the point (tk, yk)
and we approximate the value of u(tk+1) with yk+1 = l(tk+1).

Using this method, we construct the following numerical schemes that give us
the approximate solutions of (2.17) and (2.18).

• For pendant drop:

xi+1 = xi + τ cosϕi,

zi+1 = zi + τ sinϕi,

ϕi+1 = ϕi + τ

(
2b+ czi −

sinϕi
xi

)
.

(2.21)
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Figure 2.19: Geometric interpretation of the Euler method.

• For rotating drop:

xi+1 = xi + τ cosϕi,

zi+1 = zi + τ sinϕi,

ϕi+1 = ϕi + τ

(
2b+ dx2

i −
sinϕi
xi

)
.

(2.22)

We have tested the Euler method by studying the results it gives for drop’s
profiles with known values of the parameters. As shown in Fig. 2.20 and Fig. 2.22,
it recovers the known shapes with very good accuracy. In Fig. 2.21 and Fig. 2.23
drop’s profiles with changed parameters are shown. Obviously, in order to obtain
the correct result, we need to compute the model parameters with sufficiently
good accuracy.
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Figure 2.20: Experimental and theoretical profiles of a pendant drop. The exact
solution corresponds to parameters b = 1.84365781711 and c = −2.9.

(a) b = 1.84365781711, c = −2.7 (b) b = 1.84365781711, c = −3.1

(c) b = 2, c = −2.9 (d) b = 1.7, c = −2.9

Figure 2.21: Sensitivity of the solutions with respect to the model parameters.
The exact solution corresponds to the parameters b = 1.84365781711, and c =
−2.9
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Figure 2.22: Experimental and theoretical profiles, obtained with the Euler
method, for a pendant drop. The exact solution corresponds to parameters
b = 1.57480314961 and c = −2.3.

(a) b = 1.57480314961, c = −2.3 (b) b = 1.57480314961, c = −2.6

(c) b = 1.4, c = −2.3 (d) b = 1.7, c = −2.3

Figure 2.23: Sensitivity of the solutions with respect to the model parameters.
The exact solution corresponds to the parameters b = 1.84365781711, and c =
−2.9.
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2.4.2 Fourth order explicit Runge-Kutta method

The family of explicit Runge–Kutta methods are methods used for solving the
Cauchy problem (2.19). The s-stage explicit Runge-Kutta method is given by
the formula

yn+1 − yn
h

=
1

h

s∑
i=1

biki, (2.23)

where ki are given by

k1 = hf(tn, yn),

k2 = hf(tn + α2h, yn + β21k1),

k3 = hf(tn + α3h, yn + β31k1 + β32k2),

· · ·
ks = hf(tn + αsh, yn + βs1k1 + βs2k2 + · · ·+ βs,s−1ks−1).

To specify a given method, it is enough to provide s (the number of stages),
αk, βkm, and bk. The parameters can be found so that they minimize the local
truncation error. We will use the 4-stage Runge-Kutta, i.e.

yn+1 − yn
h

=
1

h

4∑
i=1

biki,

where

k1 = hf(tn, yn),

k2 = hf(tn + α2h, yn + β21k1),

k3 = hf(tn + α3h, yn + β31k1 + β32k2),

k4 = hf(tn + α4h, yn + β41k1 + β42k2 + β43k3).

It can be shown that the local truncation error of the 4-stage Runge-Kutta
method is O(h4) and from this computations we can obtain the following nu-
merical scheme:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4),

where

k1 = hf(tn, yn),

k2 = hf

(
tn +

h

2
, yn +

k1

2

)
,

k3 = hf

(
tn +

h

2
, yn +

k2

2

)
,

k4 = hf(tn + h, yn + k3).

We will solve the system (2.17) or (2.18). For this purpose we will solve si-
multaneously all equations using the Runge–Kutta method. Let us introduce
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the notation u := (x, z, ϕ)T and f := (f1, f2, f3)T , where f1, f2, and f3 are the
right-hand sides of the model (2.17) or (2.18).

In order to test our numerical scheme, we shall compare the obtained results
with known experimental profiles for given values of the model parameters.

As can be seen from Fig. 2.24 and Fig. 2.25, the method gives satisfactory
results.

In Fig. 2.26 we study the sensitivity of the solution with respect to the
model parameters. Perturbations in both parameters can lead to changes in the
solutions.

Figure 2.24: Experimental and theoretical profiles of a pendant drop. The exact
solution corresponds to parameters b = 1.84365781711 and c = −2.9.

(a) b = 1.57480314961 and c = −2.3 for
drop 2

(b) b = 2.06440957886, c = −2.4 for
drop 3

Figure 2.25: Experimental and theoretical profiles, obtained with the Runge–
Kutta method, of pendant drops.
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(a) b = 1.84365781711, c = −2.7 (b) b = 1.84365781711, c = −3

(c) b = 1.7, c = −2.9 (d) b = 1.9, c = −2.9

(e) b = 1.9, c = −2.95 (f) b = 2, c = −3.4

Figure 2.26: Sensitivity of the solutions with respect to the model parameters.
The exact solution corresponds to the parameters b = 1.84365781711, and c =
−2.9.
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2.5 Parametric Identification

The main purpose of this paper is to find a way to determine the surface tension
of a liquid material by analyzing an image of a drop of this material. We shall
accomplish this in two different ways, by using two distinct optimization algo-
rithms — the Deepest descent and the Gauss-Newton methods. For both the
algorithms we use the same objective function that we call the error function
and describe it in the paragraph below.

2.5.1 Error function

First, we have to define a function that for any given values of the parameters
b and c will give us a numerical representation of the “distance” between the
theoretical and the experimental profiles. We shall call this function the error
function (Err(b, c)) and will define it in the following way (see Fig. 2.27).

1. Let {(xi, zi)}n1
i=1 be the cloud of points derived from the experimental data

and {(x̃i, z̃i)}n2
i=1 be the cloud of points acquired from the numerical solu-

tion of the ODE system, for given parameters b and c.

2. For every point in the theoretical profile, (x̃i, z̃i), i = 1, n2, let us find the
following two points (see Fig. 2.27):

(xi1 , zi1) : xi1 = max
xi≤x̃i

xi,

(xi2 , zi2) : xi2 = min
xi≥x̃i

xi.

We ignore all the points (x̃i, z̃i) for which the following inequalities hold:

x̃i < min
0≤i≤n1

xi,

x̃i > max
0≤i≤n1

xi.

3. Now let us construct a line li : (xi1 , zi1), (xi2 , zi2) ∈ li. We shall denote
the distance between the point (x̃i, z̃i) and the line li by di,

di := dist((x̃i, z̃i), li).

If for some point (x̃k, z̃k)

x̃k = max
xi≤x̃i

xi = min
xi≥x̃i

xi = xik ,

then di := dist((x̃k, z̃k), (xik , zik)).

4. We define the error function Err : R2 → R to be

Err(b, c) =

n2∑
i=1

d2
i .
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Figure 2.27: Definition of the error function.

2.5.2 Initial guess

The optimization methods we use depend strongly on having an accurate initial
guess for the parameters b and c. This we shall obtain from the experimental
data. From the third equation in (2.21) or (2.22) we obtain the system

A.X = B, (2.24)

where:

• for pendant drop:

A =


2τ τz1

2τ τz2
...

...
2τ τzn−1

 , X =

[
b
c

]
, B =

 ϕ2 − ϕ1 + τ sinϕ1

x1
...

ϕn − ϕn−1 + τ sinϕn−1

xn−1

 ;

• for rotating drop:

A =


2τ τx2

1

2τ τx2
2

...
...

2τ τx2
n−1

 , X =

[
b
d

]
, B =

 ϕ2 − ϕ1 + τ sinϕ1

x1
...

ϕn − ϕn−1 + τ sinϕn−1

xn−1

 .
Now, let us substitute xi, zi in the latter with our experimental data. Because
our raw data consists only of points with coordinates (x, z) we use the following
formula to calculate the values of the angle ϕ at every point from our data:

ϕi = arctan
zi − zi−1

xi − xi−1
, i = 1, n1.

The Euler method states that (2.24) will hold approximately, so by solving it we
obtain an initial estimation of the model parameters.
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2.5.3 Deepest descent method

The idea of the Deepest descent method is, starting from some initial guess v1 =
(binitial, cinitial) for the model’s parameters, to obtain a sequence of consecutive
estimations {vn}kn=1, going in the direction of the negative gradient vector. The
direction of the negative gradient vector is toward the closest local minimum.
Because our function Err(b, c) is non-constant and non-negative, the point (breal,
creal), where breal and creal are the actual values of the parameters b and c, is
a local (and overall) minimum. Due to this fact, if we start with a sufficiently
accurate initial guess for b and c, the negative gradient vector will point towards
the real values.

We implement this idea in the following algorithm:

1. We begin with the initial guess v1 = (binitial, cinitial).

2. For k = 1, 2, . . .:

(a) we obtain an approximation vk with the formula

vk = vk−1 − α∇Err(vk),

where α is a number for which the following inequality holds:

Err(vk) < Err(vk−1).

(b) If

Err(vk) < ε

for some error tolerance, ε, we stop the algorithm and take vk to be
the approximation of the optimal solution.

Now, let us see what results our optimization methods yields. For several sets
of experimental data we were able to approximate the values of b and c. Using
the Euler method, we drew the theoretical profile with the estimated values of b
and c and compared it to the experimental profile, see Fig. 2.28 and Fig. 2.29.

As we can see, if we have a good initial guess the method converges to
appropriate values for b and c.

2.5.4 Gauss–Newton method

The Gauss-Newton method is an optimization algorithm. Suppose we are given
a set of data points {(xi, yi)}ni=1 (i.e., the experimental profile). We want to
obtain b and c, so that Err(b, c) is minimized. In order to do so we set

g(b, c) := ∇Err =

 ∂Err(b, c)

∂b
∂Err(b, c)

∂c

 = 0.
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(a) The final values of the parameters
b=1.8451 and c=-2.902, using the Euler
method.

(b) The final values of the parame-
ters b=1.8602 and c=-2.9782, using the
Runge–Kutta method.

Figure 2.28: Results of the parametric identification for a pendant drop, using
the Deepest Descent method.

(a) The final values of the parameters
b=1.5755 and c=-2.4861, using the Eu-
ler method.

(b) The final values of the parame-
ters b=1.5898 and c=-2.4851, using the
Runge–Kutta method.

Figure 2.29: Results of the parametric identification for a pendant drop, using
the Deepest Descent method.

We represent g(b, c) as Taylor series and obtain consecutively

0 = g(bi+1, ci+1) = g(bi + ∆b, ci + ∆c) ≈ g(bi, ci) +∇g(bi, ci) ·
[

∆b
∆c

]
,[

∆b
∆c

]
≈ −(∇g(bi, ci))

−1g(bi, ci) = −H−1∇Err(bi, ci),[
bi+1

ci+1

]
≈
[
bi
ci

]
−H−1∇Err(bi, ci)

where H is the Hessian of the function Err(b, c). We implement this idea in the
following algorithm.

1. We begin with the initial guess k1 = (binitial, cinitial).

2. For i = 1, 2, . . .:
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(a) we obtain an approximation ki+1 with the formula[
bi+1

ci+1

]
≈
[
bi
ci

]
−H−1∇Err(bi, ci), (2.25)

where we approximate the first partial derivatives in the gradient,
using first order forward divided differences and the derivatives in the
Hessian, using second order central divided differences.

(b) If
Err(ki+1) < ε

for some error tolerance, ε, we stop the algorithm and take ki+1 to be
the approximation of the optimal solution.

Using the Gauss-Newton method and refined set of points, originating from
the experimental data, we obtain the results shown in Fig. 2.30 and Fig. 2.31.
As we can see, the Gauss–Newton method gives satisfactory results for those
two drops. For drops, that have an inflection point, however, the results given

(a) The final values of the parameters
b=1.8936 and c=-3.3030 using the Eu-
ler method.

(b) The final values of the parame-
ters b=1.8778 and c=-3.0191 using the
Runge–Kutta method.

Figure 2.30: Results of the parametric identification for a pendant drop, using
the Deepest Descent method.

by the algorithm do not seem to be good. We could argue that the definition of
the error function is not adequate for this case and, hence, further improvements
should be made.
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(a) The final values of the parameters
b=1.6079 and c=-2.5978, using the Eu-
ler method.

(b) The final values of the parame-
ters b=1.6079 and c=-2.5978, using the
Runge–Kutta method.

Figure 2.31: Results of the parametric identification for pendant drops, having
no inflection points, using the Gauss-Newton method.

(a) The initial values of the parameters
b=2.0793 and c=-2.4246.

(b) The final values of the parameters
b=2.1336 and c=-2.6568.

Figure 2.32: Results of the parametric identification for a pendant drop, having
an inflection point, using the Gauss-Newton method.
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2.6 Conclusion

We have studied an applied problem of estimating the surface tension of a fluid
by estimating the parameters in a model, describing the shape of a drop of the
fluid.

The optimization algorithms used in parametric identification algorithms are
usually iterative and need a good initial guess. We have proposed an algorithm
for the initial estimation that to the best of our knowledge is new and (as the
numerical experiments showed) gives very satisfactory results.

In order to have good computational times we have tried comparatively low-
order methods for solving the three-dimensional ODE system that describes
the drops’ profiles. Both the Euler method and the fourth order Runge-Kutta
method are sufficient for recovering the drops’ profiles in the cases of only grav-
itational forces or only centrifugal forces acting on the drop.

The Gauss–Newton and the Deepest descent methods were used for minimiz-
ing the error function. In the case of drops’ profiles having no inflection points
both algorithms succeed in finding the correct values of the model parameters
provided initial guess by our method. As the numerical experiments showed,
the error definition is not adequate in cases when inflection points exist. Thus,
further improvement is needed in this direction.



Appendix A

Pressure. Interfacial tension.

Pressure is defined as force per unit area, p = F
A , where F is the force and A is

the area, on which the force is applied. The pressure is normal to the surface on
which it is applied.
Here, we derive the Pascal’s law, the formula for the hydrostatic pressure and
prove that the hydrostatic pressure depends only on the depth of the container
and the density of the liquid.

A.1 Pascal’s law for pressure at a point

The Pascal’s law states that the pressure at a point is the same in all directions.
Derivation:
Let us consider an infinitesimally small element ABCDEF of a static fluid with
triangular prism form, which contains a point P . Let px, py and ps be the
pressures acting on the three faces of the prism as shown at Fig. A.1.

Figure A.1: px acts perpendicular to the face ADEF , py acts perpendicular to
the face ABCD, ps acts perpendicular to the face BCEF

33
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The fluid is static, thus, the sum of all forces that act on the element is equal to
0. They are

Fy = pySABCD = py ·AB ·BC,
Fx = pxSADEF = px ·AD ·AF = px ·BC ·AF, (A.1)

Fs = psSBCEF = ps ·BC ·BF.

Summing the forces in the x-direction, we obtain

Fx = Fs sin θ,

where θ is the angle between AB and BF . Substituting (A.1) into the latter, it
follows that

px ·BC ·AF = ps ·BC ·BF sin θ = ps ·BC ·BF ·
AF

BF
,

px = ps.

Summing the forces in the y-direction, we have

Fy = Fs sin θ + weight.

Contracting the prism to a point, and, thus, neglecting the weight of the fluid,
we obtain consecutively

Fy = Fs sin θ,

py ·AB ·BC = ps ·BC ·BF cos θ = ps ·BC ·BF ·
AB

BF
,

py = ps.

Thus, we proved that px = py = ps in a point, where ps is the pressure at an
arbitrary angle, θ, from the x-axis, i.e. the pressure is the same in all directions.

A.2 Hydrostatic pressure

Here, we derive a formula for the hydrostatic pressure at depth H in an arbi-
trarily shaped vessel. First, we derive the model for a tank having rectangular
parallelepiped shape. Then, we consecutively show that the pressure at equal
depths is the same in cylinder and in curved shaped tank.

A.2.1 Hydrostatic pressure in rectangular parallelepipeds

Let us consider a rectangular parallelepiped, containing liquid and let it be sub-
jected only to gravitational forces. Then, two kinds of pressure are induced in
it — hydrostatic and atmospheric (see Fig. A.2). The hydrostatic pressure at a
point is the pressure due to the weight of the liquid that is above the horizontal
plain, containing the point in consideration. The atmospheric pressure is exerted
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Figure A.2: Hydrostatic pressure in a rectangular parallelepiped, in which the
level of water is H and patm is the atmospheric pressure that acts on it.

by the weight of the air on the surface.
Thus, the pressure at depth H at the water tank has two contributions, i.e.

p = patm + phydrost, (A.2)

where patm and phydrost are the corresponding atmospheric and hydrostatic pres-
sures. For the hydrostatic contribution, taking into account that it is induced
by the weight force, we have

phydrost =
G

A
=
mg

A
=
V ρg

A
= Hρg, (A.3)

where m is the mass of water, V is the volume of the drop, ρ is the density of
the fluid, A is the cross-sectional area of the tank and H is the height of the
water. Here, we used the fact that the tank is a rectangular parallelepiped and,
thus, V = AH holds. Substituting (A.3) in (A.2), we finally obtain

p = patm + ρgH. (A.4)

Remark: If we want to express the pressure on a plain P1 at depth h + H with
respect to the pressure on the plain P2 at depth h (Fig. A.3), it is obvious that

p1 = patm + ρg(H + h),

p2 = patm + ρgh.

Then, we subtract the second equation from the first one and obtain

p1 = p2 + ρgH. (A.5)

A.2.2 Equality of pressures at the same depth

Now, we shall prove that formula (A.5) can be used for tanks with arbitrary
shapes and the pressure depends only on the depth.
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Figure A.3: Hydrostatic pressure in a rectangular parallelepiped tank, in which
the level of water in plain P1 is H + h and in plain P2 is h.

First, we will show that the hydrostatic pressure in horizontal direction is a
constant in any continuous fluid. This is obvious, when we are talking about the
pressure in a rectangular parallelepiped, because of formula (A.4). But this is
true also for all forms of containers. Let us consider a cylinder, full of fluid.

Figure A.4: Hydrostatic pressure in an infinitesimally small cylinder.

The fluid is static, thus, the sum of the forces is 0. The forces are

Fa = paA,

Fb = pbA

and, thus,

pa = pb,

where pa is the pressure on the left side, pb – pressure on the right side and A
is the cross-sectional area of the cylinder. If the cylinder is infinitesimally small,
then the pressure in two points at the same level is constant (see Fig. A.4).
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A.2.3 Hydrostatic pressure in communicating vessels

Let A and B are arbitrary points at depth h1 at communicating vessels (see
Fig. A.5). We shall prove that the pressure in the points A and B is the same.
Using (A.5), we obtain

Figure A.5: Hydrostatic pressure in communicating vessels.

pc = pa + ρgh,

pd = pb + ρgh.

Taking into account that pc = pd, it follows that pa = pb holds.

A.2.4 Hydrostatic pressure in arbitrarily shaped tanks

Finally, let us consider an arbitrary shape, see Fig. A.6. We want to find the

Figure A.6: Hydrostatic pressure in an arbitrary shape.

hydrostatic pressure at the point C ′′. First, we can find the pressure at the point
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A′ : pA′ = ρgh1. The pressure at A′′ is the same as the pressure at A′. Pressure
at B′′ is

pB′′ = pB′ = P ′′A + ρgh2 = ρg(h1 + h2).

Finally, at C ′′ we have

pC′′ = pC′ = P ′′B + ρgh3 = ρg(h1 + h2 + h3).

This reasoning can obviously be applied to an arbitrary shape and, hence, hy-
drostatic pressure depends only on density of the liquid, gravity force
and depth. It does not depend on the volume of the liquid or the shape of the
tank that the liquid is in.

A.3 Surface tension

Surface tension is an effect within the surface of a liquid that causes it to behave
as an elastic membrane.

Figure A.7: Forces acting on the particles in a fluid

Let us consider static fluid and a particle A inside the fluid. All the cohesive
forces 1, acting on that particle, cancel out. On the other hand, the forces that
act on the particle B (on the surface of the liquid) do not cancel out, because
on the surface there are adhesive forces2 between the molecule and for example
the air (see Fig. A.7). The magnitude of the adhesive forces is smaller than the
magnitude of the cohesive, thus, the resultant force points to the liquid. Because
of this the bubbles have spherical form.

The surface tension is measured as the energy required to increase
the surface area of a liquid by a unit of area or force per unit length.

1Cohesive forces are the intermolecular forces, which are the reason why the molecules in
liquids stick together. These forces exist between molecules of the same substance.

2Adhesive forces are the attractive forces between two or more different molecules.



Appendix B

Curvature

B.1 Plain Curves

First, we define the curvature of a plain curve. In order to do so, we shall
examine the behaviour of the tangent and the normal vectors to the curve. Let
us consider a plain parametric curve r(u). Let A = r(u) and B = r(u+ ∆u) be
two points from the curve and O be the origin of the coordinate system. The

vector
−→
AB is, thus,

−→
AB =

−→
OB −

−→
OA = r(u+ ∆u)− r(u),

see Fig. B.1. If A tends to B (∆u→ 0), then the vector
−→
AB tends to the tangent

vector lim
∆u→0

[r(u+ ∆u)− r(u)]. Let us introduce the notation

Figure B.1: The vector r(u+ ∆u)− r(u) tends to the tangent vector as ∆u→ 0.

dr

du
:= lim

∆u→0

r(u+ ∆u)− r(u)

∆u
.

39
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Then, we can say that dr
du is a tangent vector and the unit tangent vector t is

t =
dr
du∣∣ dr
du

∣∣ , (B.1)

where ∣∣∣∣ drdu
∣∣∣∣ = lim

∆u→0

|r(u+ ∆u)− r(u)|
∆u

.

If we approximate the length of the segment AB (i.e., |r(u+ ∆u)− r(u)|) with

the length of
_
AB (let us denote it by ∆s), we obtain∣∣∣∣ drdu

∣∣∣∣ = lim
∆u→0

∆s

∆u
=
ds

du
. (B.2)

From (B.1) and (B.2) we obtain

t =
dr

ds
.

Therefore, the unit tangent vector is the derivative of the curve with respect to
the arc length. If r(s) is the curve parameterized by the arc length, then we
define

d2r

ds2
= lim

∆s→0

r′(s+ ∆s)− r′(s)
∆s

,

where ′ denotes d
ds . It is known that r′(s + ∆s), r′(s) are tangent vectors (see

Fig. B.2). When A tends to B, r′(s) tends to r′(s + ∆s) and the vector r′(s +

Figure B.2: The vector r′(s+ ∆s)− r′(s) tends to the normal vector as ∆s→ 0.

∆s) − r′(s) tends to the vector perpendicular to the tangent vector. The unit
vector n is defined as follows

n =
r′′(s)

|r′′(s)|
=
t′

k
, (B.3)
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where k is called curvature at a point. We can define k as

k = |r′′(s)| = lim
∆s→0

|r′(s+ ∆s)− r′(s)|
∆s

= lim
∆s→0

|sin ∆ϕ|
∆s

.

Taking into account that ∆s→ 0, it follows that ∆ϕ→ 0, then sin |∆ϕ| ≈ |∆ϕ|
holds true and

k = |r′′(s)| = lim
∆s→0

∆ϕ

∆s
=:

dϕ

ds
.

Curvatures of lines and circles

Let tA and tB denote the tangents to the curve at two different points A
and B, see Fig. B.3, and ϕA and ϕB are the corresponding angles between the
tangents and the x-axis. For a line, the curvature at any point is 0, because

Figure B.3: The curvature is defined as k = dϕ
ds .

k = lim
∆s→0

ϕB − ϕA
∆s

= lim
∆s→0

ϕA − ϕA
∆s

= 0.

For a circle, we have

k = lim
∆s→0

ϕB − ϕA
∆s

.

Using the notation from Fig. B.4, ∠APB = ϕ and m ‖ l, then ∠PBQ = ϕ.
Thus, the angle between m and n is equal to π

2 + ϕ. Therefore, the following
equality holds:

k = lim
∆s→0

ϕB − ϕA
∆s

= lim
∆s→0

π
2 + ϕ− π

2

∆s
= lim

∆s→0

ϕ

∆s
= lim

∆s→0

∆s
R

∆s
=

1

R
. (B.4)

Given any curve C and a point P on it, there is a unique circle, which
approximates the curve near P the best, see Fig. B.5. The curvature of C at a
point P is defined to be the curvature of that circle of curvature or reciprocal
to the radius of that circle (radius of curvature).
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Figure B.4: The curvature of a circle is k = 1
R .

Figure B.5: Locally, the curvature of every point can be approximated with the
curvature of a circle.

B.2 Surfaces

B.2.1 Tangent and normal vectors

Let us consider a surface r(u, v). Let us consider two points A = r(u + ∆u, v)

and B = r(u, v) on the surface, see Fig. B.6. The vector
−→
AB is

−→
AB = r(u+ ∆u, v)− r(u, v) =

r(u+ ∆u, v)− r(u, v)

∆u
∆u.

If ∆u tends to 0, i.e. the point B tends to the point A, then the direction of
−→
AB

tends to the direction of the tangent vector ru, where

ru :=
∂r

∂u
= lim

∆u→0

r(u+ ∆u, v)− r(u, v)

∆u
,

but
−→
AB and ru are with different lengths. Analogously, rv is tangent to the

surface at the point A. The tangent vectors ru and rv span the tangent plain
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Figure B.6: r(u+ ∆u)− r(u) tends to the tangent vector when ∆u→ 0.

and every vector, which is their linear combination, lies in that plain. Therefore,
the vector

−→
PQ =

∂r

∂u
du+

∂r

∂v
dv = rudu+ rvdv, (B.5)

is tangent to the surface. When P tends to Q, the length of the vector PQ tends
to the length ds of the arc PQ, i.e

lim
P→Q

ds = lim
P→Q

| ~PQ| =
√

(rudu+ rvdv)2 =
√
r2
u(du)2 + 2rurvdudv + (rv)2 =√

E(du)2 + 2Fdudv +G(dv)2, (B.6)

where E = r2
u, F = rurv, G = r2

v . Therefore, the unit tangent vector is

t =
rudu+ rvdv√

E(du)2 + 2Fdudv +G(dv)2
.

Let us define the normal vector as

n =
ru × rv
|ru × rv|

.

Obviously, n is perpendicular to the tangent plane, i.e.

n · t = 0.

B.2.2 Curvature

We want to calculate the normal curvature of the surface C at a point P . First,
we can find a plain p through P , which is normal to C. The intersection of
the plain p and the surface C is a plain curve with curvature k. There are
infinitely many such plains pi with curvatures k. There is a plain among them
with minimal curvature kmin and a plain with maximal curvature kmax (kmin
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Figure B.7: kmax Figure B.8: kmin

and kmax are called principal curvatures). The mean curvature H is defined
as the average of the principal curvatures or

H =
kmin + kmax

2
. (B.7)

From (B.4) and (B.7) it follows that

H =
1

2

(
1

R1
+

1

R2

)
,

where R1 and R2 are the radii of the circles that best approximate the curvature
of the curves, lying in normal planes through P . They are called principal radii
of curvature. In order to compute the maximum and the minimum curvature,
first we will find the curvature of a curve, parameterized with respect to the
arc length, on the surface through the point P . For this purpose differentiating
n(s)t(s) = 0 with respect to s, we obtain

dn

ds
t+ n

dt

ds
= 0 ⇒ n

dt

ds
= −dn

ds
t.

Let us define the normal curvature as kn = kn and compute it

kn = kn = n
dt

ds
= −dn

ds
t = −dn

ds

dr

ds
= −

(
∂n

∂u

du

ds
+
∂n

∂v

dv

ds

)(
∂r

∂u

du

ds
+
∂r

∂v

dv

ds

)
=

= −nuru
(
du

ds

)2

− (nurv + nvru)
du

ds

dv

ds
− nvrv

(
dv

ds

)2

=

= −nuru (du)2 + (nurv + nvru)dudv + nvrv (dv)2

(ds)2

Eq.(B.6)
=== −nuru (du)2 + (nurv + nvru)dudv + nvrv (dv)2

r2
u(du)2 + 2rurvdudv + r2

v(dv)2
=
L(du)2 + 2Mdudv +N(dv)2

E(du)2 + 2Fdudv +G(dv)2
,

where L = −runu, M = −1
2 (runv + rvnu), N = −rvnv, E = r2

u, F = rurv,

G = r2
v . If we define λ = dv

du , then

kn =
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
:= f(λ).
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In order to find kmin and kmax, we must find the extrema of f(λ). We are
looking for values of λ, such that

f ′(λ) =
(2M + 2Nλ)(E + 2Fλ+Gλ2)− (L+ 2Mλ+Nλ2)(2F + 2Gλ)

(E + Fλ+Gλ2)2
= 0

After short computations, we obtain

M +Nλ

F +Gλ
=
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
=
L+Mλ+ λ(M +Nλ)

E + Fλ+ λ(F +Gλ)
=
L+Mλ

E + Fλ
= kn.

(B.8)

Therefore

λ =
knF −M
N − knG

=
Ekn − L
M − knF

.

holds true. Using the latter equation, we obtain a quadratic equation in kn:

k2
n(F 2 −GE) + (NE +GL− 2FM)kn +M2 −NL = 0.

The mean curvature is then

H = −NE +GL− 2FM

2(F 2 −GE)
.

and it can be computed directly. We shall proof that the principal directions
tmin and tmax are orthogonal. For this purpose we shall find their dot product:

tmintmax
Eq.(B.5)
===

(
∂r

∂u
du1 +

∂r

∂v
dv1

)(
∂r

∂u
du2 +

∂r

∂v
dv2

)
= (ru)2du1du2 + rurv(du1dv2 + du2dv1) + (rv)

2dv1dv2

= du1du2

(
(ru)2 + rurv

(
dv2

du2
+
dv1

du1

)
+ (rv)

2 dv2

du2

dv1

du1

)
From the definition of the variables E = r2

u, F = rurv, G = r2
v , λmax =

dv1

du1
and

λmin =
dv2

du2
, it is obvious that

tmintmax = du1du2 (E + F (λmin + λmax) +Gλminλmax) . (B.9)

From (B.9) we have that

(NF −GM)λ2 + (NE −GL)λ+ME − FL = 0.

Using Vieta’s formulas, we obtain

λmin + λmax =
GL−NE
NF −GM

λminλmax =
ME − LF
NF −GM

.

Then we can substitute the latter equations in (B.9) and conclude that tmintmax =
0, i.e. the tangents are orthogonal.
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