Circular Arc Approximation of Pointwise Curves for Use in the NC Programming

D. Fidanov 1 M. Paskova 2 R. Angelov 2 V. Bodurov 2 Instructor: Dragomir Aleksov 2

¹Faculty of Physics Plovdiv University

²Faculty of Mathematics and Informatics Sofia University

Preparatory Modelling Week

Outline

- Description of the Proposed Problem
- Wednesday Summary
- Proposed Solution
- 4 Results
- 5 Further Development

Description of the Proposed Problem

- NC (Numerical Control) machine.
- Limitations of the device.
- Input: $\{(x_1, y_1), (x_2, y_2), (x_c, y_c), E\}$

Example Of An Industrial Component

Wednesday Summary

- We presented an algorithm consisting of two basic steps.
- Draw two arcs and compare the angle between them.

- If the angle is "sufficiently" small, try to find an "optimal" arc approximating all points.
- Continue in an iterative way.

- Let us draw two circular arcs I and m through the points A, B, C and A, B, D, respectively.
- Let K denote the set of all given points.
- ACB is the "smallest" arc
- ADB is the "biggest" arc
- Choose the center $O \in [P, Q]$ for the "optimal" arc.

Wednesday Summary

• Starting with a toy set of 9 points the following results were obtained

Results

Results

Arc	Error
Arc $\stackrel{\frown}{AB}$	0.0054
Arc \widehat{BC}	0.0041

Goal: Error below 0.01!

Details of the Proposed Solution

- Let us perform the obtained algorithm with a predetermined tolerance level $\varphi>0$ for the angle in radians between two consecutive circular arcs.
- Take one positive number m (m = 0.01 in our case).
- Let $d_1, d_2, ..., d_n$ be the maximal Hausdorff distances of each circular arc to a nearby point.
- Let $d = max(d_1, d_2, ..., d_n)$
- If d>m then perform the algorithm with $\varphi:=\frac{\varphi}{10}$ until $d\leq m$.

Further Development

- Algorithm improvements for complete automation of the process.
- We are interested in finding a way of applying the obtained algorithm for the case when the set of points resembles a closed curve.
- Some theoretical considerations.

Finally...

Thank you for your attention!